LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of transition metal spacers on spin-orbit torques, spin Hall magnetoresistance, and magnetic anisotropy of Pt/Co bilayers

Photo from wikipedia

We studied the effect of inserting 0.5 nm-thick spacer layers (Ti, V, Cr, Mo, W) at the Pt/Co interface on the spin-orbit torques, Hall effect, magnetoresistance, saturation magnetization, and magnetic… Click to show full abstract

We studied the effect of inserting 0.5 nm-thick spacer layers (Ti, V, Cr, Mo, W) at the Pt/Co interface on the spin-orbit torques, Hall effect, magnetoresistance, saturation magnetization, and magnetic anisotropy. We find that the damping-like spin-orbit torque decreases substantially for all samples with a spacer layer compared to the reference Pt/Co bilayer, consistently with the opposite sign of the atomic spin-orbit coupling constant of the spacer elements relative to Pt. The reduction of the damping-like torque is monotonic with atomic number for the isoelectronic 3d, 4d, and 5d elements, with the exception of V that has a stronger effect than Cr. The field-like spin-orbit torque almost vanishes for all spacer layers irrespective of their composition, suggesting that this torque predominantly originates at the Pt/Co interface. The anomalous Hall effect, magnetoresistance, and saturation magnetization are also all reduced substantially, whereas the sheet resistance is increased in the presence of the spacer layer. Finally, we evidence a correlation between the amplitude of the spin-orbit torques, the spin Hall-like magnetoresistance, and the perpendicular magnetic anisotropy. These results highlight the significant influence of ultrathin spacer layers on the magnetotransport properties of heavy metal/ferromagnetic systems.

Keywords: orbit torques; magnetic anisotropy; orbit; magnetoresistance; spacer; spin orbit

Journal Title: Physical Review B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.