LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Critical properties of the measurement-induced transition in random quantum circuits

Photo from wikipedia

We numerically study the measurement-driven quantum phase transition of Haar-random quantum circuits in $1+1$ dimensions. By analyzing the tripartite mutual information we are able to make a precise estimate of… Click to show full abstract

We numerically study the measurement-driven quantum phase transition of Haar-random quantum circuits in $1+1$ dimensions. By analyzing the tripartite mutual information we are able to make a precise estimate of the critical measurement rate $p_c = 0.17(1)$. We extract estimates for the associated bulk critical exponents that are consistent with the values for percolation, as well as those for stabilizer circuits, but differ from previous estimates for the Haar-random case. Our estimates of the surface order parameter exponent appear different from that for stabilizer circuits or percolation, but we are unable to definitively rule out the scenario where all exponents in the three cases match. Moreover, in the Haar case the prefactor for the entanglement entropies $S_n$ depends strongly on the R\'enyi index $n$; for stabilizer circuits and percolation this dependence is absent. Results on stabilizer circuits are used to guide our study and identify measures with weak finite-size effects. We discuss how our numerical estimates constrain theories of the transition.

Keywords: quantum circuits; transition; random quantum; stabilizer circuits

Journal Title: Physical Review B
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.