Cuprate superconductors have shaped the contemporary state of condensed matter physics. Recently, infinite-layer Nd-doped NiO${}_{2}$ nickelates have initiated a new era of unconventional superconductivity, of which this paper constitutes the… Click to show full abstract
Cuprate superconductors have shaped the contemporary state of condensed matter physics. Recently, infinite-layer Nd-doped NiO${}_{2}$ nickelates have initiated a new era of unconventional superconductivity, of which this paper constitutes the first comprehensive theoretical analysis at weak and strong coupling. From a combined perspective of $a\phantom{\rule{0}{0ex}}b$ $i\phantom{\rule{0}{0ex}}n\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}t\phantom{\rule{0}{0ex}}i\phantom{\rule{0}{0ex}}o$ studies, random phase approximation, and $t$-$J$ model analysis, the authors find that the infinite-layer nickelates form a $d$-wave superconductor with three-dimensional fermiological features. Several experiments are proposed to confirm these theoretical predictions.
               
Click one of the above tabs to view related content.