LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Giant enhancement of perpendicular magnetic anisotropy and induced quantum anomalous Hall effect in graphene/ NiI2 heterostructures via tuning the van der Waals interlayer distance

Photo by brambro from unsplash

Using first-principles calculations, we reveal that the perpendicular magnetic anisotropy of ${\mathrm{NiI}}_{2}$ monolayer can be effectively enhanced via decreasing the interlayer distance of graphene/${\mathrm{NiI}}_{2}$ (Gr/${\mathrm{NiI}}_{2}$) van der Waals (vdW) heterostructures.… Click to show full abstract

Using first-principles calculations, we reveal that the perpendicular magnetic anisotropy of ${\mathrm{NiI}}_{2}$ monolayer can be effectively enhanced via decreasing the interlayer distance of graphene/${\mathrm{NiI}}_{2}$ (Gr/${\mathrm{NiI}}_{2}$) van der Waals (vdW) heterostructures. Furthermore, by analyzing the atomic-resolved magnetocrystalline anisotropy energy (MAE), orbital hybridization-resolved MAE and the density of states we elucidate that this magnetic anisotropy enhancement mainly originated from the electronic states change of $5p$ orbitals of interfacial I atoms. At the same time, we find that the ${\mathrm{NiI}}_{2}$ substrate induces strong magnetic proximity effects on graphene and the quantum anomalous Hall effect (QAHE) can be acquired by decreasing the interlayer spacing. Our work demonstrates the control of magnetic anisotropy of two-dimensional ferromagnetic materials via tuning vdW interlayer distance, and provides a van der Waals system to realize the QAHE.

Keywords: van der; der waals; magnetic anisotropy; interlayer distance; anisotropy

Journal Title: Physical Review B
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.