LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transport signatures of a junction between a quantum spin Hall system and a chiral topological superconductor

Photo from wikipedia

We investigate transport through a normal-superconductor (NS) junction made from a quantum spin Hall (QSH) system with helical edge states and a two-dimensional (2D) chiral topological superconductor (TSC) having a… Click to show full abstract

We investigate transport through a normal-superconductor (NS) junction made from a quantum spin Hall (QSH) system with helical edge states and a two-dimensional (2D) chiral topological superconductor (TSC) having a chiral Majorana edge mode. We employ a two-dimensional extended four-band model for HgTe-based quantum wells in a magnetic (Zeeman) field and subject to $s$-wave superconductivity. We show using the Bogoliubov-de Gennes scattering formalism that this structure provides a striking transport signal of a 2D TSC. As a function of the sample width (or Fermi energy) the conductance resonances go through a sequence of $2{e}^{2}/h$ (nontrivial phase) and $4{e}^{2}/h$ plateaux (trivial phase) which fall within the region of a nonzero Chern number (2D limit) as the sample width becomes large. These signatures are a manifestation of the topological nature of the QSH effect and the TSC.

Keywords: topological superconductor; chiral topological; transport; spin hall; superconductor; quantum spin

Journal Title: Physical Review B
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.