LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Manifestations of classical size effect and electronic viscosity in the magnetoresistance of narrow two-dimensional conductors: Theory and experiment

Photo from wikipedia

We develop a classical kinetic theory of magnetotransport of 2D electrons in narrow channels with partly diffusive boundary scattering and apply it to the description of magnetoresistance measured in the… Click to show full abstract

We develop a classical kinetic theory of magnetotransport of 2D electrons in narrow channels with partly diffusive boundary scattering and apply it to the description of magnetoresistance measured in the temperature interval 4.2--30 K in long mesoscopic bars fabricated from high-purity GaAs quantum well structures. Both experiment and theory demonstrate a number of characteristic features in the longitudinal and Hall resistances caused by the size effect in two dimensions owing to the high ballisticity of the transport. In addition to the features described previously, we also reveal a change in the slope of the first derivative of magnetoresistance when the cyclotron orbit diameter equals to half of the channel width. These features are suppressed with increasing temperature as a result of the electronic viscosity due to electron-electron interaction. By comparing theory and experiment, we determine the characteristic time of relaxation of angular distribution of electrons caused by electron-electron scattering.

Keywords: magnetoresistance; electronic viscosity; theory experiment; size effect

Journal Title: Physical Review B
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.