LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intertwined order in fractional Chern insulators from finite-momentum pairing of composite fermions

Photo by miracleday from unsplash

We investigate the problem of intertwined orders in fractional Chern insulators by considering lattice fractional quantum Hall (FQH) states arising from pairing of composite fermions in the square-lattice Hofstadter model.… Click to show full abstract

We investigate the problem of intertwined orders in fractional Chern insulators by considering lattice fractional quantum Hall (FQH) states arising from pairing of composite fermions in the square-lattice Hofstadter model. At certain filling fractions, magnetic translation symmetry ensures the composite fermions form Fermi surfaces with multiple pockets, leading to the formation of finite-momentum Cooper pairs in the presence of attractive interactions. We obtain mean-field phase diagrams exhibiting a rich array of striped and topological phases, establishing paired lattice FQH states as an ideal platform to investigate the intertwining of topological and conventional broken symmetry order.

Keywords: chern insulators; composite fermions; finite momentum; fractional chern; pairing composite

Journal Title: Physical Review B
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.