LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiple magnon modes in spin- 12 Heisenberg antiferromagnet on simple square lattice in strong magnetic field

Photo from wikipedia

We discuss spin-$\frac12$ Heisenberg antiferromagnet on simple square lattice in magnetic field $H$ using recently proposed bond-operator technique. It is well known that magnetically ordered phases of quantum magnets are… Click to show full abstract

We discuss spin-$\frac12$ Heisenberg antiferromagnet on simple square lattice in magnetic field $H$ using recently proposed bond-operator technique. It is well known that magnetically ordered phases of quantum magnets are well described at least qualitatively by the conventional spin-wave theory that only introduces quantum corrections into the classical solution of the problem. We observe that quantum fluctuations change drastically dynamical properties of the considered model at $H$ close to its saturation value: the dynamical structure factor shows anomalies corresponding to Green's function poles which have no counterparts in the spin-wave theory. That is, quantum fluctuations produce multiple short-wavelength magnon modes not changing qualitatively the long-wavelength spin dynamics. Our results are in agreement with previous quantum Monte-Carlo simulations and exact diagonalization of finite clusters.

Keywords: magnon modes; square lattice; magnetic field; heisenberg antiferromagnet; antiferromagnet simple; simple square

Journal Title: Physical Review B
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.