LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamics after quenches in one-dimensional quantum Ising-like systems

Photo from academic.microsoft.com

We study the out-of-equilibrium dynamics of one-dimensional quantum Ising-like systems, arising from sudden quenches of the Hamiltonian parameter $g$ driving quantum transitions between disordered and ordered phases. In particular, we… Click to show full abstract

We study the out-of-equilibrium dynamics of one-dimensional quantum Ising-like systems, arising from sudden quenches of the Hamiltonian parameter $g$ driving quantum transitions between disordered and ordered phases. In particular, we consider quenches to values of $g$ around the critical value $g_c$, and mainly address the question whether, and how, the quantum transition leaves traces in the evolution of the transverse and longitudinal magnetizations during such a deep out-of-equilibrium dynamics. We shed light on the emergence of singularities in the thermodynamic infinite-size limit, likely related to the integrability of the model. Finite systems in periodic and open boundary conditions develop peculiar power-law finite-size scaling laws related to revival phenomena, but apparently unrelated to the quantum transition, because their main features are generally observed in quenches to generic values of $g$. We also investigate the effects of dissipative interactions with an environment, modeled by a Lindblad equation with local decay and pumping dissipation operators within the quadratic fermionic model obtainable by a Jordan-Wigner mapping. Dissipation tends to suppress the main features of the unitary dynamics of closed systems. We finally address the effects of integrability breaking, due to further lattice interactions, such as in anisotropic next-to-nearest neighbor Ising (ANNNI) models. We show that some qualitative features of the post-quench dynamics persist, in particular the different behaviors when quenching to quantum ferromagnetic and paramagnetic phases, and the revival phenomena due to the finite size of the system.

Keywords: quantum ising; dimensional quantum; ising like; one dimensional; like systems

Journal Title: Physical Review B
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.