LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparing the generalized Kadanoff-Baym ansatz with the full Kadanoff-Baym equations for an excitonic insulator out of equilibrium

Photo from wikipedia

We investigate out-of-equilibrium dynamics in an excitonic insulator (EI) with a finite momentum pairing perturbed by a laser-pulse excitation and a sudden coupling to fermionic baths. The transient dynamics of… Click to show full abstract

We investigate out-of-equilibrium dynamics in an excitonic insulator (EI) with a finite momentum pairing perturbed by a laser-pulse excitation and a sudden coupling to fermionic baths. The transient dynamics of the excitonic order parameter is resolved using the full nonequilibrium Green's function approach and the generalized Kadanoff-Baym ansatz (GKBA) within the second-Born approximation. The comparison between the two approaches after a laser pulse excitation shows a good agreement in the weak and the intermediate photo-doping regime. In contrast, the laser-pulse dynamics resolved by the GKBA does not show a complete melting of the excitonic order after a strong excitation. Instead we observe persistent oscillations of the excitonic order parameter with a predominant frequency given by the renormalized equilibrium bandgap. This anomalous behavior can be overcome within the GKBA formalism by coupling to an external bath, which leads to a transition of the EI system towards the normal state. We analyze the long-time evolution of the system and distinguish decay timescales related to dephasing and thermalization.

Keywords: generalized kadanoff; equilibrium; kadanoff; kadanoff baym; excitonic insulator

Journal Title: Physical Review B
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.