LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Three interaction energy scales in the single-layer high- Tc cuprate HgBa2CuO4+δ

Photo from wikipedia

The lamellar cuprate superconductors exhibit the highest ambient-pressure superconducting transition temperatures (T$_C$) and, after more than three decades of extraordinary research activity, continue to pose formidable scientific challenges. A major… Click to show full abstract

The lamellar cuprate superconductors exhibit the highest ambient-pressure superconducting transition temperatures (T$_C$) and, after more than three decades of extraordinary research activity, continue to pose formidable scientific challenges. A major experimental obstacle has been to distinguish universal phenomena from materials- or technique-dependent ones. Angle-resolved photoemission spectroscopy (ARPES) measures momentum-dependent single-particle electronic excitations and has been invaluable in the endeavor to determine the anisotropic momentum-space properties of the cuprates. HgBa$_2$CuO$_{4+\delta}$ (Hg1201) is a single-CuO$_2$-layer cuprate with a particularly high optimal T$_C$ and a simple crystal structure; yet there exists little information from ARPES about the electronic properties of this model system. Here we present an ARPES study of doping-, temperature-, and momentum-dependent systematics of near-nodal dispersion anomalies in Hg1201. The data reveal a hierarchy of three distinct energy scales -a sub-gap low-energy kink, an intermediate-energy kink near 55 meV, and a peak-dip-hump structure. The first two features are attributed to the coupling of electrons to Ba-derived optical phonons and in-plane bond-stretching phonons, respectively. The nodal peak-dip-hump structure appears to have a common doping-dependence in several single-layer cuprates, and is interpreted as a manifestation of pseudogap physics at the node. These results establish several universal phenomena, both in terms of connecting multiple experimental techniques for a single material, and in terms of connecting comparable spectral features in multiple structurally similar cuprates.

Keywords: three interaction; energy scales; layer; single layer; energy; cuprate

Journal Title: Physical Review B
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.