LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Megahertz dynamics in skyrmion systems probed with muon-spin relaxation

Photo by tabithabrooke from unsplash

We present longitudinal-field muon-spin relaxation (LF $\mu$SR) measurements on two systems that stabilize a skyrmion lattice (SkL): Cu$_2$OSeO$_3$, and Co$_x$Zn$_y$Mn$_{20-x-y}$ for $(x,y)~=~(10,10)$, $(8,9)$ and $(8,8)$. We find that the SkL… Click to show full abstract

We present longitudinal-field muon-spin relaxation (LF $\mu$SR) measurements on two systems that stabilize a skyrmion lattice (SkL): Cu$_2$OSeO$_3$, and Co$_x$Zn$_y$Mn$_{20-x-y}$ for $(x,y)~=~(10,10)$, $(8,9)$ and $(8,8)$. We find that the SkL phase of Cu$_2$OSeO$_3$ exhibits emergent dynamic behavior at megahertz frequencies, likely due to collective excitations, allowing the SkL to be identified from the $\mu$SR response. From measurements following different cooling protocols and calculations of the muon stopping site, we suggest that the metastable SkL is not the majority phase throughout the bulk of this material at the fields and temperatures where it is often observed. The dynamics of bulk Co$_8$Zn$_9$Mn$_3$ are well described by $\simeq~2$ GHz excitations that reduce in frequency near the critical temperature, while in Co$_8$Zn$_8$Mn$_4$ we observe similar behavior over a wide range of temperatures, implying that dynamics of this kind persist beyond the SkL phase.

Keywords: muon spin; skyrmion; spin relaxation; megahertz dynamics

Journal Title: Physical Review B
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.