We study the response of ballistic electron waves in graphene to a square array composed of gate-defined quantum dots when the incident energy is at the neutral point of the… Click to show full abstract
We study the response of ballistic electron waves in graphene to a square array composed of gate-defined quantum dots when the incident energy is at the neutral point of the Dirac conical dispersion. The effective medium theory shows that the array will behave as a zero-refractive-index medium. Our simulations based on the rigorous multiple scattering theory corroborate that it can indeed exhibit various typical applications of zero-refractive-index media, such as the focusing effect of electron waves, the control over the propagation direction, and directional emission. The array is usually about one-wavelength thick so that the incident wave can penetrate it and the wave front can be tailored by engineering the geometrical shape of the emergent surface. The wave-manipulating behaviors based on zero-index metamaterials could open unprecedented opportunities to steer the flow of graphene electrons in novel manners and shape the wave front of electron beams at will.
               
Click one of the above tabs to view related content.