LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electron ground state g factor in embedded InGaAs quantum dots: An atomistic study

Photo from wikipedia

We present atomistic computations within an empirical pseudopotential framework for the electron $s$-shell ground state $g$-tensor of embedded InGaAs quantum dots (QDs). A large structural set consisting of geometry, size,… Click to show full abstract

We present atomistic computations within an empirical pseudopotential framework for the electron $s$-shell ground state $g$-tensor of embedded InGaAs quantum dots (QDs). A large structural set consisting of geometry, size, molar fraction and strain variations is worked out. The tensor components are observed to show insignificant discrepancies even for the highly anisotropic shapes. The family of $g$-factor curves associated with these parameter combinations coalesce to a single universal one when plotted as a function of the gap energy, thus confirming a recent assertion using a completely different electronic structure. Moreover, our work extends its validity to alloy QDs with various shapes and finite confinement that allows for penetration to the host matrix as in actual samples. Our set of results for practically relevant InGaAs QDs can help to accomplish through structural control, $g$-near-zero, or other targeted $g$ values for spintronic or electron spin resonance-based direct quantum logic applications.

Keywords: quantum dots; ground state; ingaas quantum; electron; embedded ingaas

Journal Title: Physical Review B
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.