The spin resonance of electrons can be coupled to a microwave cavity mode to obtain a photon-magnon hybrid system. These quantum systems are widely studied for both fundamental physics and… Click to show full abstract
The spin resonance of electrons can be coupled to a microwave cavity mode to obtain a photon-magnon hybrid system. These quantum systems are widely studied for both fundamental physics and technological quantum applications. In this article, the behavior of a large number of ferrimagnetic spheres coupled to a single cavity is put under test. We use second-quantization modeling of harmonic oscillators to theoretically describe our experimental setup and understand the influence of several parameters. The magnon-polariton dispersion relation is used to characterize the system, with a particular focus on the vacuum Rabi mode splitting due to multiple spheres. We combine the results obtained with simple hybrid systems to analyze the behavior of a more complex one, and show that it can be devised in such a way to minimize the degrees of freedom needed to completely describe it. By studying single-sphere coupling two possible size-effects related to the sample diameter have been identified, while multiple-spheres configurations reveal how to upscale the system. This characterization is useful for the implementation of an axion-to-electromagnetic field transducer in a ferromagnetic haloscope for dark matter searches. Our dedicated setup, consisting in ten 2 mm-diameter YIG spheres coupled to a copper microwave cavity, is used for this aim and studied at mK temperatures. Moreover, we show that novel applications of optimally-controlled hybrid systems can be foreseen for setups embedding a large number of samples.
               
Click one of the above tabs to view related content.