We examine the motion of an individual skyrmion driven through an assembly of other skyrmions by a constant or increasing force in the absence of quenched disorder. The skyrmion behavior… Click to show full abstract
We examine the motion of an individual skyrmion driven through an assembly of other skyrmions by a constant or increasing force in the absence of quenched disorder. The skyrmion behavior is determined by the ratio of the damping and Magnus terms, as expressed in terms of the intrinsic skyrmion Hall angle. For a fixed driving force in the damping dominated regime, the effective viscosity decreases monotonically with increasing skyrmion density, similar to what is observed in overdamped systems where it becomes difficult for the driven particle to traverse the surrounding medium at high densities. In contrast, in the Magnus dominated regime the velocity dependence on the density is nonmonotonic, and there is a regime in which the skyrmion moves faster with increasing density, as well as a pronounced speed-up effect in which a skyrmion traveling through a dense medium moves more rapidly than it would at low densities or in the single particle limit. At higher densities, the effective damping increases and the velocity decreases. The velocity-force curves in the Magnus-dominated regime show marked differences from those in the damping-dominated regimes. Under an increasing drive we find that there is a threshold force for skyrmion motion which increases with density. Additionally, the skyrmion Hall angle is drive dependent, starting near zero at the threshold for motion and increasing with increasing drive before reaching a saturation value, similar to the behavior found for skyrmions driven over quenched disorder. We map dynamic phase diagrams showing the threshold for motion, nonlinear flow, speed-up, and saturation regimes. We also find that in some cases, increasing the density can reduce the skyrmion Hall angle while producing a velocity boost, which could be valuable for applications.
               
Click one of the above tabs to view related content.