Based on the MPS formalism, we introduce an ansatz for capturing excited states in finite systems with open boundary conditions, providing a very efficient method for computing, e.g., the spectral… Click to show full abstract
Based on the MPS formalism, we introduce an ansatz for capturing excited states in finite systems with open boundary conditions, providing a very efficient method for computing, e.g., the spectral gap of quantum spin chains. This method can be straightforwardly implemented on top of an existing DMRG or MPS ground-state code. Although this approach is built on open-boundary MPS, we also apply it to systems with periodic boundary conditions. Despite the explicit breaking of translation symmetry by the MPS representation, we show that momentum emerges as a good quantum number, and can be exploited for labeling excitations on top of MPS ground states. We apply our method to the critical Ising chain on a ring and the classical Potts model on a cylinder. Finally, we apply the same idea to compute excitation spectra for 2-D quantum systems on infinite cylinders. Again, despite the explicit breaking of translation symmetry in the periodic direction, we recover momentum as a good quantum number for labeling excitations. We apply this method to the 2-D transverse-field Ising model and the half-filled Hubbard model; for the latter, we obtain accurate results for, e.g., the hole dispersion for cylinder circumferences up to eight sites.
               
Click one of the above tabs to view related content.