LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conformal maps of viscous electron flow in the Gurzhi crossover

Photo by dels from unsplash

We investigate the impact of geometric constriction on the viscous flow of electron liquid through quantum point contacts. We provide analysis on the electric potential distribution given the setup of… Click to show full abstract

We investigate the impact of geometric constriction on the viscous flow of electron liquid through quantum point contacts. We provide analysis on the electric potential distribution given the setup of a slit configuration and use the method of conformal mapping to obtain analytical results. The potential profile can be tested and contrasted experimentally with the scanning tunneling potentiometry technique. We discuss intricate physics that underlies the Gurzhi effect, i.e., the enhancement of conductivity in the viscous flow, and compare results for different boundary conditions. In addition, we calculate the temperature dependence of the momentum relaxation time as a result of impurity assisted quasiballistic interference effects and discuss various correlational corrections that lead to the violation of Matthiessen’s rule in the hydrodynamic regime. We caution that spatially inhomogeneous profiles of current in the Gurzhi crossover between Ohmic and Stokes flows might also appear in the nonhydrodynamic limit where nonlocality plays an important role. This conclusion is corroborated by calculation of dispersive conductivity in the weakly impure limit.

Keywords: conformal maps; maps viscous; gurzhi; gurzhi crossover; viscous electron

Journal Title: Physical Review B
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.