We reexamine the Kosterlitz-Thouless phase transition in the ground state $|{\mathrm{\ensuremath{\Psi}}}_{0}\ensuremath{\rangle}$ of an antiferromagnetic spin-$\frac{1}{2}$ Heisenberg chain with nearest- and next-nearest-neighbor interactions $\ensuremath{\lambda}$ from a different perspective: After defining winding… Click to show full abstract
We reexamine the Kosterlitz-Thouless phase transition in the ground state $|{\mathrm{\ensuremath{\Psi}}}_{0}\ensuremath{\rangle}$ of an antiferromagnetic spin-$\frac{1}{2}$ Heisenberg chain with nearest- and next-nearest-neighbor interactions $\ensuremath{\lambda}$ from a different perspective: After defining winding number (topological charge) $W$ in the basis of resonating valence bond states, the finite-size scaling of $\ensuremath{\langle}{\mathrm{\ensuremath{\Psi}}}_{0}|W|{\mathrm{\ensuremath{\Psi}}}_{0}\ensuremath{\rangle}, \ensuremath{\langle}{\mathrm{\ensuremath{\Psi}}}_{0}|W|{\ensuremath{\partial}}_{\ensuremath{\lambda}}{\mathrm{\ensuremath{\Psi}}}_{0}\ensuremath{\rangle}, \ensuremath{\langle}{\ensuremath{\partial}}_{\ensuremath{\lambda}}{\mathrm{\ensuremath{\Psi}}}_{0}|W|{\ensuremath{\partial}}_{\ensuremath{\lambda}}{\mathrm{\ensuremath{\Psi}}}_{0}\ensuremath{\rangle}$ leads to the accurate value of critical coupling ${\ensuremath{\lambda}}_{c}=0.2412\ifmmode\pm\else\textpm\fi{}0.0007$ and to the value of subleading critical exponent $\ensuremath{\nu}=2.000\ifmmode\pm\else\textpm\fi{}0.001$. This approach should be useful when examining the topological phase transitions in all systems described in the basis of resonating valence bonds.
               
Click one of the above tabs to view related content.