LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spin-textured neutron beams with orbital angular momentum

Photo from wikipedia

We present a rigorous theoretical framework underpinning the technique of spin-echo modulated small-angle neutron scattering (SEMSANS), and show how the technique can be extended in order to generate spin-textured neutron… Click to show full abstract

We present a rigorous theoretical framework underpinning the technique of spin-echo modulated small-angle neutron scattering (SEMSANS), and show how the technique can be extended in order to generate spin-textured neutron beams with orbital angular momentum (OAM) via birefringent neutron spin-polarization devices known as magnetic Wollaston prisms. Neutron OAM beams are mathematically characterized by a ``cork-screw'' phase singularity $e^{i \ell \phi}$ about the propagation axis where $\ell$ is the OAM quantum number. To understand the precise relationship between the emergent OAM state and the variety of spin textures realized by various setups, we have developed a path-integral approach that in the interferometric limit makes a judicious use of magnetic Snell's law. We show that our proposed technique produces a complex two-dimensional pattern of spin-OAM entangled states which may be useful as a probe of quantum magnetic materials. We compare our path-integral approach to the well-known single-path Larmor precession model and present a pedagogical derivation of magnetic Snell's law of refraction for both massive and massless particles based on Maupertuis's action principle.

Keywords: textured neutron; orbital angular; spin; beams orbital; spin textured; neutron beams

Journal Title: Physical Review B
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.