LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fermi-Dirac staircase occupation of Floquet bands and current rectification inside the optical gap of metals: An exact approach

Photo by einstein29 from unsplash

We consider a model of a Bloch band subjected to an oscillating electric field and coupled to a featureless fermionic heat bath, which can be solved exactly. We demonstrate rigorously… Click to show full abstract

We consider a model of a Bloch band subjected to an oscillating electric field and coupled to a featureless fermionic heat bath, which can be solved exactly. We demonstrate rigorously that in the limit of vanishing coupling to this bath (so that it acts as an ideal thermodynamic bath) the occupation of the Floquet band is not a simple Fermi-Dirac distribution function of the Floquet energy, but instead it becomes a ``staircase'' version of this distribution. We show that this distribution generically leads to a finite rectified electric current within the optical gap of a metal even in the limit of vanishing carrier relaxation rates, providing a rigorous demonstration that such rectification is generically possible and clarifying previous statements in the optoelectronics literature. We show that this current remains non-zero even up to the leading perturbative second order in the amplitude of electric fields, and that it approaches the standard perturbative expression of the Jerk current obtained from a simpler Boltzmann description within a relaxation time approximation when the frequencies are small compared to the bandwidth.

Keywords: occupation floquet; optical gap; fermi dirac

Journal Title: Physical Review B
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.