LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Collective excitations of the Chern-insulator states in commensurate double moiré superlattices of twisted bilayer graphene on hexagonal boron nitride

Photo by meadowmariee from unsplash

We study the collective excitation modes of the Chern insulator states in magic-angle twisted bilayer graphene aligned with hexagonal boron nitride (TBG/BN) at odd integer fillings ($\nu$) of the flat… Click to show full abstract

We study the collective excitation modes of the Chern insulator states in magic-angle twisted bilayer graphene aligned with hexagonal boron nitride (TBG/BN) at odd integer fillings ($\nu$) of the flat bands. For the $1 \times 1$ commensurate double moir\'{e} superlattices in TBG/BN at three twist angles ($\theta'$) between BN and graphene, self-consistent Hartree-Fock calculations show that the electron-electron interaction and the broken $C_{2z}$ symmetry lead to the Chern-insulator ground states with valley-spin flavor polarized HF bands at odd $\nu$. In the active-band approximation, the HF bands in the same flavor of TBG/BN are much more separated than those of the pristine TBG with TBG/BN having a larger intra-flavor band gap so that the energies of the lowest intra-flavor exciton modes of TBG/BN computed within the time-dependent HF method are much higher than those of TBG and reach about 20 meV, and the exciton wavefunctions of TBG/BN become less localized than those of TBG. The inter-flavor valley-wave modes in TBG/BN have excitation energies higher than 2.5 meV which is also much larger than that of TBG, while the spin-wave modes all have zero excitation gap. In contrast to TBG with particle-hole symmetric excitation modes for positive and negative $\nu$, the excitation spectrums and gaps of TBG/BN at positive $\nu$ are rather different from those at negative $\nu$. The quantitative behavior of the excitation spectrum of TBG/BN also varies with $\theta'$. Full HF calculations demonstrate that more HF bands besides the two central bands can have rather large contributions from the single-particle flat-band states, then the lowest exciton modes that determine the optical properties of the Chern insulator states in TBG/BN are generally the ones between the remote and flat-like bands, while the valley-wave modes have similar energies as those in the active-band approximation.

Keywords: tbg; insulator states; excitation; twisted bilayer; chern insulator

Journal Title: Physical Review B
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.