LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Band geometry, Berry curvature and superfluid weight

Photo from wikipedia

We present a theory of the superfluid weight in multiband attractive Hubbard models within the Bardeen-Cooper-Schrieffer (BCS) mean-field framework. We show how to separate the geometric contribution to the superfluid… Click to show full abstract

We present a theory of the superfluid weight in multiband attractive Hubbard models within the Bardeen-Cooper-Schrieffer (BCS) mean-field framework. We show how to separate the geometric contribution to the superfluid weight from the conventional one, and that the geometric contribution is associated with the interband matrix elements of the current operator. Our theory can be applied to systems with or without time-reversal symmetry. In both cases the geometric superfluid weight can be related to the quantum metric of the corresponding noninteracting systems. This leads to a lower bound on the superfluid weight given by the absolute value of the Berry curvature. We apply our theory to the attractive Kane-Mele-Hubbard and Haldane-Hubbard models, which can be realized in ultracold atom gases. Quantitative comparisons are made to state of the art dynamical mean-field theory and exact diagonalization results.

Keywords: berry curvature; geometry; superfluid weight

Journal Title: Physical Review B
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.