We perform combined density functional and dynamical mean-field calculations to study the pyrochlore iridates Lu$_2$Ir$_2$O$_7$, Y$_2$Ir$_2$O$_7$ and Eu$_2$Ir$_2$O$_7$. Both single-site and cluster dynamical mean-field calculations are performed and spin-orbit coupling… Click to show full abstract
We perform combined density functional and dynamical mean-field calculations to study the pyrochlore iridates Lu$_2$Ir$_2$O$_7$, Y$_2$Ir$_2$O$_7$ and Eu$_2$Ir$_2$O$_7$. Both single-site and cluster dynamical mean-field calculations are performed and spin-orbit coupling is included. Paramagnetic metallic phases, antiferromagnetic metallic phases with tilted Weyl cones and antiferromagnetic insulating phases are found. The magnetic phases display all-in/all-out magnetic ordering, consistent with previous studies. Unusually for electronically three dimensional materials, the single-site dynamical mean-field approximation fails to reproduce qualitative material trends, predicting in particular that the paramagnetic phase properties of Y$_2$Ir$_2$O$_7$ and Eu$_2$Ir$_2$O$_7$ are almost identical, although in experiments the Y compound has a much higher resistance than the Eu compound. This qualitative failure is attributed to the importance of intersite magnetic correlations in the physics of these materials.
               
Click one of the above tabs to view related content.