LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessment of long-range-corrected exchange-correlation kernels for solids: Accurate exciton binding energies via an empirically scaled bootstrap kernel

Photo from wikipedia

In time-dependent density-functional theory, a family of exchange-correlation kernels, known as long-range-corrected (LRC) kernels, have shown promise in the calculation of excitonic effects in solids. We perform a systematic assessment… Click to show full abstract

In time-dependent density-functional theory, a family of exchange-correlation kernels, known as long-range-corrected (LRC) kernels, have shown promise in the calculation of excitonic effects in solids. We perform a systematic assessment of existing static LRC kernels (empirical LRC, Bootstrap, and jellium-with-a-gap model) for a range of semiconductors and insulators, focusing on optical spectra and exciton binding energies. We find that no LRC kernel is capable of simultaneously producing good optical spectra and quantitatively accurate exciton binding energies for both semiconductors and insulators. We propose a simple and universal, empirically scaled Bootstrap kernel that yields accurate exciton binding energies for all materials under consideration, with low computational cost.

Keywords: accurate exciton; range; exciton binding; bootstrap; binding energies

Journal Title: Physical Review B
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.