A spin-1 atomic gas in an optical lattice, in the unit-filling Mott Insulator (MI) phase and in the presence of disordered spin-dependent interaction, is considered. In this regime, at zero… Click to show full abstract
A spin-1 atomic gas in an optical lattice, in the unit-filling Mott Insulator (MI) phase and in the presence of disordered spin-dependent interaction, is considered. In this regime, at zero temperature, the system is well described by a disordered rotationally-invariant spin-1 bilinear-biquadratic model. We study, via the density matrix renormalization group algorithm, a bounded disorder model such that the spin interactions can be locally either ferromagnetic or antiferromagnetic. Random interactions induce the appearance of a disordered ferromagnetic phase characterized by a non-vanishing value of spin-glass order parameter across the boundary between a ferromagnetic phase and a dimer phase exhibiting random singlet order. The study of the distribution of the block entanglement entropy reveals that in this region there is no random singlet order.
               
Click one of the above tabs to view related content.