LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of SU(2) symmetry on many-body localization and thermalization

Photo by ramaissance from unsplash

The many-body localized (MBL) phase is characterized by a complete set of quasi-local integrals of motion and area-law entanglement of excited eigenstates. We study the effect of non-Abelian continuous symmetries… Click to show full abstract

The many-body localized (MBL) phase is characterized by a complete set of quasi-local integrals of motion and area-law entanglement of excited eigenstates. We study the effect of non-Abelian continuous symmetries on MBL, considering the case of $SU(2)$ symmetric disordered spin chains. The $SU(2)$ symmetry imposes strong constraints on the entanglement structure of the eigenstates, precluding conventional MBL. We construct a fixed-point Hamiltonian, which realizes a non-ergodic (but non-MBL) phase characterized by eigenstates having logarithmic scaling of entanglement with the system size, as well as an incomplete set of quasi-local integrals of motion. We study the response of such a phase to local symmetric perturbations, finding that even weak perturbations induce multi-spin resonances. We conclude that the non-ergodic phase is generally unstable and that $SU(2)$ symmetry implies thermalization. The approach introduced in this work can be used to study dynamics in disordered systems with non-Abelian symmetries, and provides a starting point for searching non-ergodic phases beyond conventional MBL.

Keywords: phase; many body; non ergodic; effect symmetry; body

Journal Title: Physical Review B
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.