LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dissipative Landau-Zener problem and thermally assisted Quantum Annealing

Photo by alanbajura from unsplash

We revisit the issue of thermally assisted quantum annealing by a detailed study of the dissipative Landau-Zener problem in presence of a Caldeira-Leggett bath of harmonic oscillators, using both a… Click to show full abstract

We revisit the issue of thermally assisted quantum annealing by a detailed study of the dissipative Landau-Zener problem in presence of a Caldeira-Leggett bath of harmonic oscillators, using both a weak-coupling quantum master equation and a quasi-adiabatic path-integral approach. Building on the known zero-temperature exact results (Wubs et al., PRL 97, 200404 (2006)), we show that a finite temperature bath can have a beneficial effect on the ground-state probability only if it couples also to a spin-direction that is transverse with respect to the driving field, while no improvement is obtained for the more commonly studied purely longitudinal coupling. In particular, we also highlight that, for a transverse coupling, raising the bath temperature further improves the ground-state probability in the fast-driving regime. We discuss the relevance of these findings for the current quantum-annealing flux qubit chips.

Keywords: assisted quantum; dissipative landau; zener problem; thermally assisted; quantum annealing; landau zener

Journal Title: Physical Review B
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.