LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Universal upper bounds on the Bose-Einstein condensate and the Hubbard star

Photo from wikipedia

For N hard-core bosons on an arbitrary lattice with d sites and independent of additional interaction terms we prove that the hard-core constraint itself already enforces a universal upper bound… Click to show full abstract

For N hard-core bosons on an arbitrary lattice with d sites and independent of additional interaction terms we prove that the hard-core constraint itself already enforces a universal upper bound on the Bose-Einstein condensate given by Nmax=(N/d)(d-N+1). This bound can only be attained for one-particle states |φ) with equal amplitudes with respect to the hard-core basis (sites) and when the corresponding N-particle state |Ψ) is maximally delocalized. This result is generalized to the maximum condensate possible within a given sublattice. We observe that such maximal local condensation is only possible if the mode entanglement between the sublattice and its complement is minimal. We also show that the maximizing state |Ψ) is related to the ground state of a bosonic "Hubbard star" showing Bose-Einstein condensation.

Keywords: einstein condensate; universal upper; bose einstein; hubbard star; condensate

Journal Title: Physical Review B
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.