LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Boosting the power factor with resonant states: A model study

Photo by karsten_wuerth from unsplash

A particularly promising pathway to enhance the efficiency of thermoelectric materials lies in the use of resonant states, as suggested by experimentalists and theorists alike. In this paper, we go… Click to show full abstract

A particularly promising pathway to enhance the efficiency of thermoelectric materials lies in the use of resonant states, as suggested by experimentalists and theorists alike. In this paper, we go over the mechanisms used in the literature to explain how resonant levels affect the thermoelectric properties, and we suggest that the effects of hybridization are crucial yet ill-understood. In order to get a good grasp of the physical picture and to draw guidelines for thermoelectric enhancement, we use a tight-binding model containing a conduction band hybridized with a flat band. We find that the conductivity is suppressed in a wide energy range near the resonance, but that the Seebeck coefficient can be boosted for strong enough hybridization, thus allowing for a significant increase of the power factor. The Seebeck coefficient can also display a sign change as the Fermi level crosses the resonance. Our results suggest that in order to boost the power factor, the hybridization strength must not be too low, the resonant level must not be too close to the conduction (or valence) band edge, and the Fermi level must be located around, but not inside, the resonant peak.

Keywords: boosting power; resonant states; factor resonant; power; power factor

Journal Title: Physical Review B
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.