LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Gauge theory of the long-range proximity effect and spontaneous currents in superconducting heterostructures with strong ferromagnets

Photo from wikipedia

We present the generalized quasiclassical theory of the long-range superconducting proximity effect in heterostructures with strong ferromagnets, where the exchange splitting is of the order of Fermi energy. In the… Click to show full abstract

We present the generalized quasiclassical theory of the long-range superconducting proximity effect in heterostructures with strong ferromagnets, where the exchange splitting is of the order of Fermi energy. In the ferromagnet the propagation of spin-triplet Cooper pairs residing on the spin-split Fermi surfaces is shown to be governed by the spin-dependent Abelian gauge field which results either from the spin-orbital coupling or from the magnetic texture. The additional gauge field enters into the quasiclassical equations in superposition with the usual electromagnetic vector potential and results in the generation of spontaneous superconducting currents and phase shifts in various geometries which provide the sources of long-range spin-triplet correlations. We derive the Usadel equations and boundary conditions for the strong ferromagnet and consider several generic examples of the Josephson systems supporting spontaneous currents.

Keywords: heterostructures strong; long range; spontaneous currents; strong ferromagnets; proximity effect; theory long

Journal Title: Physical Review B
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.