LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ordering tendencies and electronic properties in quaternary Heusler derivatives

Photo by topdata from unsplash

The phase stabilities and ordering tendencies in the quaternary full-Heusler alloys NiCoMnAl and NiCoMnGa have been investigated by in-situ neutron diffraction, calorimetry and magnetization measurements. NiCoMnGa was found to adopt… Click to show full abstract

The phase stabilities and ordering tendencies in the quaternary full-Heusler alloys NiCoMnAl and NiCoMnGa have been investigated by in-situ neutron diffraction, calorimetry and magnetization measurements. NiCoMnGa was found to adopt the L2$_1$ structure, with distinct Mn and Ga sublattices but a common Ni-Co sublattice. A second-order phase transition to the B2 phase with disorder also between Mn and Ga was observed at 1160 K. In contrast, in NiCoMnAl slow cooling or low-temperature annealing treatments are required to induce incipient L2$_1$ ordering, otherwise the system displays only B2 order. Linked to this L2$_1$ ordering, a drastic increase in the magnetic transition temperature was observed in NiCoMnAl, while annealing affected the magnetic behavior of NiCoMnGa only weakly due to the low degree of quenched-in disorder. First principles calculations were employed to study the thermodynamics as well as order-dependent electronic properties of both compounds. It was found that a near half-metallic pseudo-gap emerges in the minority spin channel only for the completely ordered Y structure, which however is energetically unstable compared to the predicted ground state of a tetragonal structure with alternating layers of Ni and Co. The experimental inaccessibility of the totally ordered structures is explained by kinetic limitations due to the low ordering energies.

Keywords: quaternary heusler; electronic properties; tendencies electronic; properties quaternary; ordering tendencies

Journal Title: Physical Review B
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.