LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spin-triplet supercurrent in Josephson junctions containing a synthetic antiferromagnet with perpendicular magnetic anisotropy

We present measurements of Josephson junctions containing three magnetic layers with noncolinear magnetizations. The junctions are of the form $S/F^{\prime}/N/F/N/F^{\prime \prime}/S$, where $S$ is superconducting Nb, $F^\prime$ is either a… Click to show full abstract

We present measurements of Josephson junctions containing three magnetic layers with noncolinear magnetizations. The junctions are of the form $S/F^{\prime}/N/F/N/F^{\prime \prime}/S$, where $S$ is superconducting Nb, $F^\prime$ is either a thin Ni or Permalloy layer with in-plane magnetization, $N$ is the normal metal Cu, $F$ is a synthetic antiferromagnet (SAF) with magnetization perpendicular to the plane, composed of Pd/Co multilayers on either side of a thin Ru spacer, and $F^{\prime \prime}$ is a thin Ni layer with in-plane magnetization. The supercurrent in these junctions decays more slowly as a function of the $F$-layer thickness than for similar spin-singlet junctions not containing the $F^\prime$ and $F^{\prime \prime}$ layers. The slower decay is the prime signature that the supercurrent in the central part of these junctions is carried by spin-triplet pairs. The junctions containing $F^{\prime}=$ Permalloy are suitable for future experiments where either the amplitude of the critical current or the ground-state phase difference across the junction is controlled by changing the relative orientations of the magnetizations of the $F^{\prime}$ and $F^{\prime \prime}$ layers.

Keywords: prime prime; josephson junctions; spin triplet; junctions containing; synthetic antiferromagnet

Journal Title: Physical Review B
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.