LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Topological invariants for Floquet-Bloch systems with chiral, time-reversal, or particle-hole symmetry

Photo from wikipedia

We introduce $\mathbb Z_2$-valued bulk invariants for symmetry-protected topological phases in $2+1$ dimensional driven quantum systems. These invariants adapt the $W_3$-invariant, expressed as a sum over degeneracy points of the… Click to show full abstract

We introduce $\mathbb Z_2$-valued bulk invariants for symmetry-protected topological phases in $2+1$ dimensional driven quantum systems. These invariants adapt the $W_3$-invariant, expressed as a sum over degeneracy points of the propagator, to the respective symmetry class of the Floquet-Bloch Hamiltonian. The bulk-boundary correspondence that holds for each invariant relates a non-zero value of the bulk invariant to the existence of symmetry-protected topological boundary states. To demonstrate this correspondence we apply our invariants to a chiral Harper, time-reversal Kane-Mele, and particle-hole symmetric graphene model with periodic driving, where they successfully predict the appearance of boundary states that exist despite the trivial topological character of the Floquet bands. Especially for particle-hole symmetry, combination of the $W_3$ and the $\mathbb Z_2$-invariants allows us to distinguish between weak and strong topological phases.

Keywords: hole symmetry; floquet bloch; particle hole; time reversal; symmetry

Journal Title: Physical Review B
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.