Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge the gap between theoretical models and real materials. One of the most powerful experimental methods… Click to show full abstract
Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge the gap between theoretical models and real materials. One of the most powerful experimental methods in solids is angle-resolved photoemission spectroscopy (ARPES), which measures the single-particle spectral function. The authors propose a measurement scheme to experimentally access the momentum- and energy-resolved spectral function in a quantum gas microscope. As an example for possible applications, the spectrum of a single hole excitation in one-dimensional $t$-$J$ models is calculated and analyzed. A sharp asymmetry in the distribution of spectral weight, reminiscent of the Fermi arcs observed in the pseudogap phase of cuprates, appears in the case of an isotropic Heisenberg spin chain.
               
Click one of the above tabs to view related content.