LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quantum dot in interacting environments

Photo from academic.microsoft.com

A quantum impurity attached to an interacting quantum wire gives rise to an array of of new phenomena. Using Bethe Ansatz we solve exactly models describing two geometries of a… Click to show full abstract

A quantum impurity attached to an interacting quantum wire gives rise to an array of of new phenomena. Using Bethe Ansatz we solve exactly models describing two geometries of a quantum dot coupled to an interacting quantum wire: a quantum dot that is (i) side-coupled and (ii) embedded in a Luttinger liquid. We find the eigenstates and determine the spectrum through the Bethe Ansatz equations. Using this we derive exact expressions for the ground state dot occupation. The thermodynamics are then studied using the thermodynamics Bethe Ansatz equations. It is shown that at low energies the dot becomes fully hybridized and acts as a backscattering impurity or tunnel junction depending on the geometry and furthermore that the two geometries are related by changing the sign of the interactions. Although remaining strongly coupled for all values of the interaction in the wire, there exists competition between the tunneling and backscattering leading to a suppression or enhancement of the dot occupation depending on the sign of the bulk interactions.

Keywords: dot interacting; thermodynamics; quantum dot; bethe ansatz; dot

Journal Title: Physical Review B
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.