LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust electric dipole transition at microwave frequencies for nuclear spin qubits in silicon

Photo from wikipedia

The nuclear spin state of a phosphorus donor ($^{31}$P) in isotopically enriched silicon-28 is an excellent host to store quantum information in the solid state. The spin's insensitivity to electric… Click to show full abstract

The nuclear spin state of a phosphorus donor ($^{31}$P) in isotopically enriched silicon-28 is an excellent host to store quantum information in the solid state. The spin's insensitivity to electric fields yields a solid-state qubit with record coherence times, but also renders coupling to other quantum systems very challenging. Here, we describe how to generate a strong electric dipole ($>100$ Debye) at microwave frequencies for the nuclear spin. This is achieved by applying a magnetic drive to the spin of the donor-bound electron, while simultaneously controlling its charge state with electric fields. Under certain conditions, the microwave magnetic drive also renders the nuclear spin resonance frequency and electric dipole strongly insensitive to electrical noise, yielding long ($>1$ ms) dephasing times and robust gate operations. The nuclear spin could then be strongly coupled to microwave resonators, with a vacuum Rabi splitting of order 1 MHz, or to other nuclear spins, nearly half a micrometer apart, via strong electric dipole-dipole interaction. This work brings the $^{31}$P nuclear qubit into the realm of hybrid quantum systems and opens up new avenues in quantum information processing.

Keywords: nuclear spin; dipole; electric dipole; microwave frequencies

Journal Title: Physical Review B
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.