LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heat-assisted self-localization of exciton polaritons

Photo from academic.microsoft.com

Bosonic condensation of microcavity polaritons is accompanied by their relaxation from the ensemble of excited states into a single quantum state. The excess of energy is transferred to the crystal… Click to show full abstract

Bosonic condensation of microcavity polaritons is accompanied by their relaxation from the ensemble of excited states into a single quantum state. The excess of energy is transferred to the crystal lattice that eventually involves heating of the structure. Creation of the condensate results in the local increase of the temperature which leads to the red shift of the exciton energy providing the mechanism for polariton self-trapping. By employing the driven-dissipative Gross-Pitaevskii model we predict a new type of a stable localized solution supported by the thermally-induced self-trapping in a one-dimensional microcavity structure. The predicted solution is of a sink-type i.e. it is characterized by the presence of converging density currents. We examine the spontaneous formation of these states from the white noise under spatially localized pumping and analyze the criteria for their stability. The collective bosonic polaron state described here may be considered as a toy model for studies of bosonic stars formed due to the self-gravity effect.

Keywords: heat assisted; self localization; exciton; exciton polaritons; assisted self; localization exciton

Journal Title: Physical Review B
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.