Using femtosecond optical pulses, we have investigated the ultrafast magnetization dynamics induced in a dielectric film of bismuth-substituted yttrium iron garnet (Bi-YIG) buried below a thick Cu/Pt metallic bilayer. We… Click to show full abstract
Using femtosecond optical pulses, we have investigated the ultrafast magnetization dynamics induced in a dielectric film of bismuth-substituted yttrium iron garnet (Bi-YIG) buried below a thick Cu/Pt metallic bilayer. We show that exciting the sample from Pt surface launches an acoustic strain pulse propagating into the garnet film. We discovered that this strain pulse induces a coherent magnetization precession in the Bi-YIG at the frequency of the ferromagnetic resonance. The observed phenomena can be explain by strain-induced changes of magnetocristalline anisotropy via the inverse magnetostriction effect. These findings open new perspectives toward the control of the magnetization in magnetic garnets embedded in complex heterostructure devices.
               
Click one of the above tabs to view related content.