LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Direct observation of unusual interfacial Dzyaloshinskii-Moriya interaction in graphene/NiFe/Ta heterostructures

Photo by cokebarros from unsplash

Graphene/ferromagnet interface promises a plethora of new science and technology. The interfacial Dzyaloshinskii Moriya interaction (iDMI) is essential for stabilizing chiral spin textures, which are important for future spintronic devices.… Click to show full abstract

Graphene/ferromagnet interface promises a plethora of new science and technology. The interfacial Dzyaloshinskii Moriya interaction (iDMI) is essential for stabilizing chiral spin textures, which are important for future spintronic devices. Here, we report direct observation of iDMI in graphene/Ni80Fe20/Ta heterostructure from non-reciprocity in spin-wave dispersion using Brillouin light scattering (BLS) technique. Linear scaling of iDMI with the inverse of Ni80Fe20 thicknesses suggests primarily interfacial origin of iDMI. Both iDMI and spin-mixing conductance increase with the increase in defect density of graphene obtained by varying argon pressure during sputter deposition of Ni80Fe20. This suggests that the observed iDMI originates from defect-induced extrinsic spin-orbit coupling at the interface. The direct observation of iDMI at graphene/ferromagnet interface without perpendicular magnetic anisotropy opens new route in designing thin film heterostructures based on 2-D materials for controlling chiral spin structure such as skyrmions and bubbles, and magnetic domain-wall-based storage and memory devices.

Keywords: interfacial dzyaloshinskii; idmi; graphene; spin; direct observation

Journal Title: Physical Review B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.