LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Advantageous nearsightedness of many-body perturbation theory contrasted with Kohn-Sham density functional theory

Photo by ramaissance from unsplash

For properties of interacting electron systems, Kohn-Sham (KS) theory is often favored over many-body perturbation theory (MBPT) owing to its low computational cost. However, the exact KS potential can be… Click to show full abstract

For properties of interacting electron systems, Kohn-Sham (KS) theory is often favored over many-body perturbation theory (MBPT) owing to its low computational cost. However, the exact KS potential can be challenging to approximate, for example in the presence of localized subsystems where the exact potential is known to exhibit pathological features such as spatial steps. By modeling two electrons, each localized in a distinct potential well, we illustrate that the step feature has no counterpart in MBPTs (including Hartree-Fock and GW) or hybrid methods involving Fock exchange because the spatial non-locality of the self-energy renders such pathological behavior unnecessary. We present a quantitative illustration of the orbital-dependent nature of the non-local potential, and a numerical demonstration of Kohn's concept of the nearsightedness for self energies, when two distant subsystems are combined, in contrast to the KS potential. These properties emphasize the value of self-energy-based approximations in developing future approaches within KS-like theories.

Keywords: many body; theory; body perturbation; perturbation theory; kohn sham

Journal Title: Physical Review B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.