In recent years there has been an increasing interest in nanomachines. Among them, current-driven ones deserve special attention as quantum effects can play a significant role there. Examples of the… Click to show full abstract
In recent years there has been an increasing interest in nanomachines. Among them, current-driven ones deserve special attention as quantum effects can play a significant role there. Examples of the latter are the so-called adiabatic quantum motors. In this work, we propose using Anderson's localization to induce nonequilibrium forces in adiabatic quantum motors. We study the nonequilibrium current-induced forces and the maximum efficiency of these nanomotors in terms of their respective probability distribution functions. Expressions for these distribution functions are obtained in two characteristic regimes: the steady-state and the short-time regimes. Even though both regimes have distinctive expressions for their efficiencies, we find that, under certain conditions, the probability distribution functions of their maximum efficiency are approximately the same. Finally, we provide a simple relation to estimate the minimal disorder strength that should ensure efficient nanomotors.
               
Click one of the above tabs to view related content.