LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes

Photo from wikipedia

Decomposing the field scattered by an object into vector spherical harmonics (VSH) is the prime task when discussing its optical properties on more analytical grounds. Thus far, it was frequently… Click to show full abstract

Decomposing the field scattered by an object into vector spherical harmonics (VSH) is the prime task when discussing its optical properties on more analytical grounds. Thus far, it was frequently required in the decomposition that the scattered field is available on a spherical surface enclosing the scatterer; being with that adapted to the spatial dependency of the VSHs but being rather incompatible with many numerical solvers. To mitigate this problem, we propose an orthogonal expression for the decomposition that holds for any surface that encloses the scatterer, independently of its shape. We also show that the orthogonal relations remain unchanged when the radiative VSH used for the expansion of the scattered field are substituted by the VSH used for the expansion of the illumination as test functions. This is a key factor for the numerical stability of our decomposition. As example, we use a finite-element based solver to compute the multipole response of a nanorod illuminated by a plane wave and study its convergence properties.

Keywords: decomposition; electromagnetic fields; vector spherical; scattered electromagnetic; decomposition scattered; wave

Journal Title: Physical Review B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.