LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Second harmonic generation in graphene dressed by a strong terahertz field

Photo by _zachreiner_ from unsplash

We observe enhanced second-harmonic generation in monolayer graphene in the presence of an ultra-strong terahertz field pulse with a peak amplitude of 250 kV/cm. This is a strongly nonperturbative regime… Click to show full abstract

We observe enhanced second-harmonic generation in monolayer graphene in the presence of an ultra-strong terahertz field pulse with a peak amplitude of 250 kV/cm. This is a strongly nonperturbative regime of light-matter interaction in which particles get accelerated to energies exceeding the initial Fermi energy of 0.2 eV over a timescale of a few femtoseconds. The second-harmonic current is generated as electrons drift through the region of momenta corresponding to interband transition resonance at an optical frequency. The resulting strongly asymmetric distortion of carrier distribution in momentum space gives rise to an enhanced electric-dipole nonlinear response at the second harmonic. We develop an approximate analytic theory of this effect which accurately predicts observed intensity and polarization of the second-harmonic signal.

Keywords: harmonic generation; graphene; strong terahertz; second harmonic; terahertz field

Journal Title: Physical Review B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.