LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonadiabatic molecular dynamics with decoherence and detailed balance under a density matrix ensemble formalism

Photo from wikipedia

Author(s): Kang, J; Wang, LW | Abstract: © 2019 American Physical Society. The mixed quantum-classical nonadiabatic molecular dynamics (NAMD) is a powerful tool to study many phenomena, especially ultrafast carrier… Click to show full abstract

Author(s): Kang, J; Wang, LW | Abstract: © 2019 American Physical Society. The mixed quantum-classical nonadiabatic molecular dynamics (NAMD) is a powerful tool to study many phenomena, especially ultrafast carrier transport and cooling. Carrier decoherence and detailed balance are two major issues in NAMD. So far, there is no computationally inexpensive approach to incorporate both effects. While the decoherence effect can be easily included in the state density matrix formalism and the detailed balance can be included in surface hopping or the wave function collapse approach, it is difficult to include both of them in a unified formalism. In this work we introduce a state density matrix formalism (referred to as P-matrix) including both the decoherence and detailed balance effects for NAMD. This method is able to explicitly treat the decoherence between different pairs of adiabatic states. Moreover, the off-diagonal density matrix elements are divided into two parts, corresponding to energy-increasing and energy-decreasing transitions. The detailed balance is then enforced by a Boltzmann factor applied to the energy-increasing transition part. The P-matrix formalism is applied to study hot-hole cooling and transfer processes in Si quantum dot (QD) systems. The calculated hot-carrier relaxation time is consistent with experiments. In a QD-pair system, the hot-hole cooling time shows weak dependence on the QD spacing. However, the hot-carrier transfer rate from one QD to another is found to decrease exponentially with the QD-QD distance. When the QD spacing is small (∼1 nm), the hot-carrier transfer can be very efficient. It is also shown that the explicit treatment of decoherence time is important in order to treat this hot-carrier transfer correctly.

Keywords: decoherence; density matrix; detailed balance; formalism; carrier

Journal Title: Physical Review B
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.