Temperature dependent crystal structures of the quasi-one-dimensional ladder material BaFe2Se3 are examined. Combining the optical second harmonic generation (SHG) experiments and neutron diffraction measurements, we elucidate the crystal structure with… Click to show full abstract
Temperature dependent crystal structures of the quasi-one-dimensional ladder material BaFe2Se3 are examined. Combining the optical second harmonic generation (SHG) experiments and neutron diffraction measurements, we elucidate the crystal structure with Pmn2_1 space group in the low-temperature phase below Ts2 = 400 K, further above Neel temperature. This low-temperature phase loses the spatial inversion symmetry, where a resultant macroscopic polarization emerges along the rung direction. The transition is characterized by block-type lattice distortions with the magneto-striction mechanism. Change in the electrical resistivity and the magnetic susceptibility across the polar-nonpolar transition also suggests a modification of the electronic states reflecting the structural instability. Consistency and discrepancy with the existing theory are discussed.
               
Click one of the above tabs to view related content.