LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hot quark matter and (proto-) neutron stars

Photo by joshuanewton from unsplash

In part one of this paper, we use a non-local extension of the 3-flavor Polyakov-Nambu-Jona-Lasinio model, which takes into account flavor-mixing, momentum dependent quark masses, and vector interactions among quarks,… Click to show full abstract

In part one of this paper, we use a non-local extension of the 3-flavor Polyakov-Nambu-Jona-Lasinio model, which takes into account flavor-mixing, momentum dependent quark masses, and vector interactions among quarks, to investigate the possible existence of a spinodal region (determined by the vanishing of the speed of sound) in the QCD phase diagram and determine the temperature and chemical potential of the critical end point. In part two of the paper, we investigate the quark-hadron composition of baryonic matter at zero as well as non-zero temperature. This is of great topical interest for the analysis and interpretation of neutron star merger events such as GW170817. With this in mind, we determine the composition of proto-neutron star matter for entropies and lepton fractions that are typical of such matter. These compositions are used to delineate the evolution of proto-neutron stars to neutron stars in the baryon-mass versus gravitational-mass diagram. The hot stellar models turn out to contain significant fractions of hyperons and $\Delta$-isobars but no deconfined quarks. The latter, are found to exist only in cold neutron stars.

Keywords: quark matter; matter; hot quark; proto neutron; neutron stars

Journal Title: Physical Review C
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.