LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inverse-kinematics proton scattering from S42,44, P41,43 , and the collapse of the N=28 major shell closure

Photo by kierinsightarchives from unsplash

Excited states of the neutron-rich isotopes $^{42,44}$S and $^{41,43}$P have been studied via inverse-kinematics proton scattering from a liquid hydrogen target, using the GRETINA $\gamma$-ray tracking array to extract inelastic… Click to show full abstract

Excited states of the neutron-rich isotopes $^{42,44}$S and $^{41,43}$P have been studied via inverse-kinematics proton scattering from a liquid hydrogen target, using the GRETINA $\gamma$-ray tracking array to extract inelastic scattering cross sections. Deformation lengths of the $2^+_1$ excitations in $^{42,44}$S have been determined and, when combined with deformation lengths determined with electromagnetic probes, yield the ratio of neutron-to-proton matrix elements $M_n/M_p$ for the $2^+_1$ excitations in these nuclei. The present results for $^{41,43}$P$(p,p')$ are used to compare two shell model interactions, SDPF-U and SDPF-MU. As in a recent study of $^{42}$Si, the present results on $^{41,43}$P favor the SDPF-MU interaction.

Keywords: scattering s42; inverse kinematics; kinematics proton; s42 p41; proton scattering; kinematics

Journal Title: Physical Review C
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.