LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exclusive π+ electroproduction off the proton from low to high −t

Photo from wikipedia

Background: Measurements of exclusive meson production are a useful tool in the study of hadronic structure. In particular, one can discern the relevant degrees of freedom at different distance scales… Click to show full abstract

Background: Measurements of exclusive meson production are a useful tool in the study of hadronic structure. In particular, one can discern the relevant degrees of freedom at different distance scales through these studies. Purpose: To study the transition between nonperturbative and perturbative quantum chromodynamics as the square of four-momentum transfer to the struck proton, -t, is increased. Method: Cross sections for the H1(e,e′π+)n reaction were measured over the -t range of 0.272 to 2.127 GeV2 with limited azimuthal coverage at fixed beam energy of 4.709 GeV, Q2 of 2.4 GeV2, and W of 2.0 GeV at the Thomas Jefferson National Accelerator Facility (JLab) Hall C. Results: The -t dependence of the measured π+ electroproduction cross section generally agrees with prior data from JLab Halls B and C. The data are consistent with a Regge amplitude-based theoretical model but show poor agreement with a generalized parton distribution-based model. Conclusion: The agreement of cross sections with prior data implies small contribution from the interference terms, and the confirmation of the change in t slopes between the low- and high - t regions previously observed in photoproduction indicates the changing nature of the electroproduction reaction in our kinematic regime.

Keywords: low high; electroproduction proton; electroproduction; proton low; exclusive electroproduction

Journal Title: Physical Review C
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.