Two-particle long-range azimuthal correlations are measured in photonuclear collisions using 1.7 nb−1 of 5.02 TeV Pb+Pb collision data collected by the ATLAS experiment at the LHC. Candidate events are selected… Click to show full abstract
Two-particle long-range azimuthal correlations are measured in photonuclear collisions using 1.7 nb−1 of 5.02 TeV Pb+Pb collision data collected by the ATLAS experiment at the LHC. Candidate events are selected using a dedicated high-multiplicity photonuclear event trigger, a combination of information from the zero-degree calorimeters and forward calorimeters, and from pseudorapidity gaps constructed using calorimeter energy clusters and chargedparticle tracks. Distributions of event properties are compared between data and Monte Carlo simulations of photonuclear processes. Two-particle correlation functions are formed using charged-particle tracks in the selected events, and a template-fitting method is employed to subtract the non-flow contribution to the correlation. Significant nonzero values of the secondand third-order flow coefficients are observed and presented as a function of charged-particle multiplicity and transverse momentum. The results are compared with flow coefficients obtained in proton–proton and proton–lead collisions in similar multiplicity ranges, and with theoretical expectations. The unique initial conditions present in this measurement provide a new way to probe the origin of the collective signatures previously observed only in hadronic collisions.
               
Click one of the above tabs to view related content.